
Token Authorization and
Validation for Site Services

Derek Weitzel - University of Nebraska

This work was partially supported by the NSF grants 2030508
(PATh), and 1836650 (IRIS-HEP), 2114989 (SciAuth)

What are tokens?

Tokens you might see are in OSG/WLCG:

1. SciTokens (https://scitokens.org)
2. WLCG Tokens (https://doi.org/10.5281/zenodo.3460258)
3. Macaroons - Not covered here (http://macaroons.io/)

https://scitokens.org
https://doi.org/10.5281/zenodo.3460258
http://macaroons.io/

What are tokens?

SciTokens and WLCG tokens are both based on JSON Web Tokens

What are tokens?

Tokens have 3 components, HEADER, PAYLOAD, and SIGNATURE

What are tokens?

Header gives very basic information about the token, including signature algorithm

What are tokens?

Payload gives all of the really important information for authorization

What are tokens?

Encoded JSON in base64

Payload Attributes

“scope”: Permissions given to the
bearer of the token (more later)
“ver” (version): The token profile that
this is following. Profiles have
different validation rules.
“aud” (audience): What service is this
token meant for. The issuer uses this
to restrict where this token can be
used. Has a special case of “ANY”.
“iss” (issuer): What service created
this token. A service will trust an
“issuer”.

{
 "scope": "read:/protected",
 "aud": "https://demo.scitokens.org",
 "ver": "scitoken:2.0",
 "iss": "https://demo.scitokens.org",
 "exp": 1634154486,
 "iat": 1634153886,
 "nbf": 1634153886,
 "jti": "0ea13bb9-40e0-4340-81ef-25f7d96c9cef"
}

Payload Attributes

“exp” (expiration): Unix epoch that the
token expires at.

“iat” (issued at): Unix epoch that the
token was issued.

“nbf” (not before): Unix epoch that the
token is not valid before.

“jit” (JWT ID): A unique identifier for
this token.

{
 "scope": "read:/protected",
 "aud": "https://demo.scitokens.org",
 "ver": "scitoken:2.0",
 "iss": "https://demo.scitokens.org",
 "exp": 1634154486,
 "iat": 1634153886,
 "nbf": 1634153886,
 "jti": "0ea13bb9-40e0-4340-81ef-25f7d96c9cef"
}

What are tokens?

WLCG Tokens have a few different attributes

Payload Attributes

“wlcg.ver”: Same as “ver”, but
specifically the WLCG profile
“sub” (subject): An identifier of the
user that authenticated and should
have received this token. Optional in
SciTokens.
“client_id”: Client that requested this
token for traceability.
“scope”: Different format than
SciTokens. More later!

{
 "wlcg.ver": "1.0",
 "sub": "8b9b75cf-7389-473a-b9e9-92025f865aa5",
 "aud": "https://wlcg.cern.ch/jwt/v1/any",
 "nbf": 1634150753,
 "scope": "storage.read:/",
 "iss": "https://wlcg.cloud.cnaf.infn.it/",
 "exp": 1634154353,
 "iat": 1634150753,
 "jti": "abf6d3d2-5172-4d31-ba59-009ee6fe5e69",
 "client_id":
"218bcb57-a55e-4c96-a577-8d03a6dc3f72"
}

Differences between WLCG and SciTokens

WLCG covers three use cases:

1. Identity Tokens with groups
2. Access Tokens with groups
3. Access Tokens with capabilities

SciTokens only implements #3

Quick tool to view tokens!

I generated all those views with https://demo.scitokens.org, which is a modified
copy of https://jwt.io.

https://demo.scitokens.org
https://jwt.io

The ANY audience!

Audience is designed stop malicious actors that steal the token from using it
anywhere but the targeted audience.

But… In some cases, you want the token to be allowed at MANY places that are
impossible to predict, for example a caching infrastructure (StashCache)

Both token types have an idea of tokens that can work everywhere!

SciTokens: “aud”: “ANY”

WLCG Tokens: “aud”: “https://wlcg.cern.ch/jwt/v1/any”

How libraries validate tokens

Storage service will contact the issuer to
download the public key

Validate the token signature with the
public key

�� Storage
Service

Webserver
JWK

Public
Key

1

2
{

 "keys": [

 {

 "crv": "P-256",

 "kid": "6804",

 "kty": "EC",

 "use": "sig",

 "x": "Svjur4JHtjpmdx5w6dWVuja_tKpqZ4JQzmo9juVlWNQ=",

 "y": "NHTw__ljkLVwHQ-mRIRic9DF5lIBSHqpbVwpAJUQ0xQ="

 }

]

}

Demo

https://sciauth.org/notebook-demo

https://sciauth.org/notebook-demo

CILogon demo

We will generate a token using CILogon

Each issuer has their own policies, CILogon issuer will have different policies than
WLCG.

Will use oidc-agent: https://indigo-dc.gitbook.io/oidc-agent/

OIDC-Agent steps

Install: https://indigo-dc.gitbook.io/oidc-agent/

$ eval $(oidc-agent)
$ oidc-gen -w device -m cilogon
Issuer: https://test.cilogon.org/
Client_id: cilogon:/weitzel/demo
Client secret is anything you want, it’s ignored.
Just hit enter when asking for scopes
Hit enter when asks for redirect_uris
Enters through the encryption

$ oidc-token cilogon
Look at the token in demo.scitokens.org
Then try curl on demo.scitokens.org:
$ curl -H "Authorization: Bearer <token>” https://demo.scitokens.org/protected

OIDC Renewal

If you have a service that requires a frequent updated tokens, OSG created a
service for that.

OSG Token Renewer:
https://github.com/opensciencegrid/osg-token-renewer

XRootD Configuration
[Global]
audience = https://red-gridftp4.unl.edu:1094, https://xrootd.unl.edu:1094, LIGO

[Issuer CMS]
issuer = https://scitokens.org/cms
base_path = /user/uscms01/pnfs/unl.edu/data4/cms
For CMS, there is no relationship between local usernames
and the VO name.
map_subject = False
default_user = cmsprod004

Audience that the server looks for is set at the top

For CMS, the allowed issuer is https://scitokens.org/cms

base_path is the base of which the permissions are allowed. Therefore, read:/ in the token really means
read:/user/uscms01/pnfs/unl.edu/data4/cms

The default_user is the mapped user for this issuer. For HDFS, it is the owner of the files written.

https://scitokens.org/cms

Debugging XRootD + Tokens

The logs are actually pretty good!

Audience is not set correctly on the token:

211014 19:25:42 15492 scitokens_GenerateAcls: ACL generation from SciToken failed: token verification failed:
'aud' claim verification failed.

