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Authentication bugs in SciToken will have catastrophic consequences to NSF projects

NSF Critical Infrastructure
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Our initial approach is to understand specs, code, and manual auditing.
Understand Scitoken Model

SciToken Clasms and Scopes
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Where are .
the bugs? Manual auditing
e Input analysis (path,
C— scope, audience)
e Concurrency analysis
p——— Critical, confirmed bug reporting
,ﬁc Time-of-check-time-of-use
on scope permission.
,ﬁ; Path traversal attack on
~  scope path (../../))
SciTokens specs SciTokens code is These bugs allow unauthorized access of protected data. 5
are well-defined sophisticated (~5K LOC) However, they are independent of SciToken’s model correctness.




Despite that SciToken has manual auditing, quality assurance (QA), and testing, they
remain inadequate in unearthing critical bugs.

# of critical bugs uncovered
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Quality &
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/-
Open source community reporting (33
Less non-critical issues in scitoken github)
Effort

Formal verification of SciToken implementations is urgently needed.



https://github.com/scitokens/scitokens/issues?q=is:issue+is:closed

Overview of Dafny: a verification-ready programming language

e A programming language with built-in
specification constructs

e Supporting formal specification through

method computeFactorial(n:int) returns (f:int)
requires n >= @

o Preconditions,

Postconditions,

ensures f == factorial(n)
{
var i := 0;
f 2= n;

while i < n-1

invariant f * fac grror: This loop invariant might not hold on entry

O
o Loop Invariant
o Termination specifications

e Formal reasoning through code using
Hoare logic (PYC{Q}

{
it=1 4+ 1;
£ i=f* (n-1);

-

Hoare, C. A. R. (October 1969). "An axiomatic basis for computer programming". Communications of the ACM. 12 (10): 576-580. doi:10.1145/363235.363259.


https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Preconditions
https://en.wikipedia.org/wiki/Postconditions
https://en.wikipedia.org/wiki/C.A.R._Hoare
https://dl.acm.org/doi/pdf/10.1145/363235.363259
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145/363235.363259

Putting Dafny in perspective

Boogie verifier architecture

High - level programming language
Dafny Chalice Dafny
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B Microsoft
B Research https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/



https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/

Why Dafny for scitokens?

e Static verification of programs at compile time, avoiding data leak and system
compromise at runtime.
e Dafny compiler produces both the proof and cross-platform, verified executable code
o Dafny code is compiled to .NET Common Intermediate Language (CIL)
o CIL is translated into six languages including compiled (Java, Go, C++) and
interpreted (Javascript, PHP, Python)
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Example: verifying scitokens audience, a critical function, with Dafny.

implement verify

Scitokens | Audience .| Audience verification
audience specs verification logic impl (scitokens.py)

4
\ 4

Dafny implementation
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Example (2): verifying scitokens scope with Dafny.

A

python’

_validate_scope(self, value):
isinstance{value, str):
InvalidAuthorizationResource
("Scope 1is invalid. Must be
._test_access:
f._test_path:
norm_requested_path

norm_requested_path =
urltools.normalize_path( f._test_path)

scope in value.split("™ "):

authz, norm_path = ._check_scope(scope)

if (self,_test_authz == authz)
norm_requested_path.startswith(norm_path):

roafiis
eTurs

scope in value.split(" "):
authz, norm_path = ._check_scope({scope)
f._token_scopes.add({authz, norm_path))

scitokens.py

i valid
value :
test_acc
norm_req
token_sc

t
resu

|va

scop
iter
auth
norm
(test

i

ate_Scopel
ess : bool,
uested_path
ope : seq<

(
1t :
lue| > 0;

e := splitlivalue,

A+ Diakad-
_path := "

_access

iter
ant ©

authz, norm_path, j := Check_Scope(scopeliter]l);

Validate-scope.dfy (excerpt)




Summary & Future Work

SciTokens

Codebase & Specs

SciToken Claims and Scopes
Language

Standard Claims

Formal
Verification

Found two bugs
/ﬁi Time-of-check-time-of-use

'ﬁf Path traversal attack

:|> Verified three critical functions

o Validate audience

o Validate scope
o Check scope

=

Correct-by-construction
program synthesis

Learned formal verification tools

Hoare logic calculus ~ {P}C{Q}

SMT/SAT solvers (z3, dafny)

Generated correct implementation
in six languages

Compiled (Java, C++, Go)

Interpreted (PHP, Javascript,
Python)

Putting human-in-the-loop with formal
verification. 10



