|

5 " .
b ﬁfc'f % -
/ %2

4 J
Bach Hoang _ Phuong Cab 'Jim Basney
SciAuth Student Fellow NCSA co-mentor ~ NCSA mentor
T & s AL [

I NCSA | NATIONAL CENTER FOR SUPERCOMPUTING APPLICATIONS

Authentication bugs in SciToken will have catastrophic consequences to NSF projects

NSF Critical Infrastructure

. , Total Investments
|| LIGO ACCESSQ =@ |
i & e | >s300m

. " |
.a Tokens as ~i
— LSST OSG 8| |
. o
Trust & Safety Issues
Tokens > SC| TOKENS - Data breach
Misuse of critical

infrastructure
- Losing U.S. leading

edges
Identity Scope Other
validation validation bugs

Our initial approach is to understand specs, code, and manual auditing.
Understand Scitoken Model

SciToken Clasms and Scopes

Larguage LR
Seandant Clarme O Lisnine Dus
o] i
L = ig
Where are .
the bugs? Manual auditing
e Input analysis (path,
C— scope, audience)
e Concurrency analysis
p——— Critical, confirmed bug reporting
,ﬁc Time-of-check-time-of-use
on scope permission.
,ﬁ; Path traversal attack on
~ scope path (../../))
SciTokens specs SciTokens code is These bugs allow unauthorized access of protected data. 5
are well-defined sophisticated (~5K LOC) However, they are independent of SciToken’s model correctness.

Despite that SciToken has manual auditing, quality assurance (QA), and testing, they
remain inadequate in unearthing critical bugs.

of critical bugs uncovered

»

More

Effort Manual
auditing

Testing

i 8
Quality &
Assurance (QA)

/-
Open source community reporting (33
Less non-critical issues in scitoken github)
Effort

Formal verification of SciToken implementations is urgently needed.

https://github.com/scitokens/scitokens/issues?q=is:issue+is:closed

Overview of Dafny: a verification-ready programming language

e A programming language with built-in
specification constructs

e Supporting formal specification through

method computeFactorial(n:int) returns (f:int)
requires n >= @

o Preconditions,

Postconditions,

ensures f == factorial(n)
{
var i := 0;
f 2= n;

while i < n-1

invariant f * fac grror: This loop invariant might not hold on entry

O
o Loop Invariant
o Termination specifications

e Formal reasoning through code using
Hoare logic (PYC{Q}

{
it=1 4+ 1;
£ i=f* (n-1);

-

Hoare, C. A. R. (October 1969). "An axiomatic basis for computer programming". Communications of the ACM. 12 (10): 576-580. doi:10.1145/363235.363259.

https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Preconditions
https://en.wikipedia.org/wiki/Postconditions
https://en.wikipedia.org/wiki/C.A.R._Hoare
https://dl.acm.org/doi/pdf/10.1145/363235.363259
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145/363235.363259

Putting Dafny in perspective

Boogie verifier architecture

High - level programming language
Dafny Chalice Dafny

l Compiled to

Intermediate verification language

3 Boogie

‘Booaile .
. -

VE generator’ Verified by

ver}ﬂcation t'aondition

"SNAT solver (23)" Satisfiability modulo theories (SMT) Solver

Z3

o
o
=]
o
4]
[
)
| =
B
>
s
[~4
[
.
8.
[
=
[+
»
]
-
)

“correct” or list of errors

B Microsoft
B Research https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/

https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/

Why Dafny for scitokens?

e Static verification of programs at compile time, avoiding data leak and system
compromise at runtime.
e Dafny compiler produces both the proof and cross-platform, verified executable code
o Dafny code is compiled to .NET Common Intermediate Language (CIL)
o CIL is translated into six languages including compiled (Java, Go, C++) and
interpreted (Javascript, PHP, Python)
R gt~ > $oa-colf I8 2

JS puthon

Error Messages
Dafny Venfiar ————————— T
13 > met e N 3
o a) I |
5 Fess
b 5

/\

Booge j————— SMT Soiver (Z3)

Computer
Assisted
Proof

Example: verifying scitokens audience, a critical function, with Dafny.

implement verify

Scitokens | Audience .| Audience verification
audience specs verification logic impl (scitokens.py)

4
\ 4

Dafny implementation

* aud (Audenca): A service the SciToken is authorized 1o

conss, Farexample. d the VO has write access to Client Seryer Result

sevamal storage seraces, Mis claim may be ublized o

»rit UAL As in AFCT7519, ANY ANY Error

iy & URL for axampla o

e owa claim is not n

mght be the na

ANY example.com | Success
example.com | ANY Error
J1 ougnt 30 ropect ar
= . Addanally, the example.com | example.com | Success

Compile
Verify
Execute

cud Ccan be R specal

Wy, wh
allow ary audience 1o match| The oud claim =

I 3 notwork.com | example.com | Fall
OFTIONAL i version 1.0, mandatory in 20

8
Specs in natural language Truth table Python implementation Errors & Counter examples

Example (2): verifying scitokens scope with Dafny.

A

python’

_validate_scope(self, value):
isinstance{value, str):
InvalidAuthorizationResource
("Scope 1is invalid. Must be
._test_access:
f._test_path:
norm_requested_path

norm_requested_path =
urltools.normalize_path(f._test_path)

scope in value.split("™ "):

authz, norm_path = ._check_scope(scope)

if (self,_test_authz == authz)
norm_requested_path.startswith(norm_path):

roafiis
eTurs

scope in value.split(" "):
authz, norm_path = ._check_scope({scope)
f._token_scopes.add({authz, norm_path))

scitokens.py

i valid
value :
test_acc
norm_req
token_sc

t
resu

|va

scop
iter
auth
norm
(test

i

ate_Scopel
ess : bool,
uested_path
ope : seq<

(
1t :
lue| > 0;

e := splitlivalue,

A+ Diakad-
_path := "

_access

iter
ant ©

authz, norm_path, j := Check_Scope(scopeliter]l);

Validate-scope.dfy (excerpt)

Summary & Future Work

SciTokens

Codebase & Specs

SciToken Claims and Scopes
Language

Standard Claims

Formal
Verification

Found two bugs
/ﬁi Time-of-check-time-of-use

'ﬁf Path traversal attack

:|> Verified three critical functions

o Validate audience

o Validate scope
o Check scope

=

Correct-by-construction
program synthesis

Learned formal verification tools

Hoare logic calculus ~ {P}C{Q}

SMT/SAT solvers (z3, dafny)

Generated correct implementation
in six languages

Compiled (Java, C++, Go)

Interpreted (PHP, Javascript,
Python)

Putting human-in-the-loop with formal
verification. 10

