
1

Authentication bugs in SciToken will have catastrophic consequences to NSF projects

User

NSF Critical Infrastructure

LSST OSG

LIGO ACCESS

Identity

validation

Scope

validation

Other

bugs

Total Investments

> $300M

Trust & Safety Issues

- Data breach

- Misuse of critical

infrastructure

- Losing U.S. leading

edges

Tokens

Tokens

2

SciTokens code is

sophisticated (~5K LOC)

Where are

the bugs?

SciTokens specs

are well-defined

Understand Scitoken Model

Manual auditing

Critical, confirmed bug reporting

● Input analysis (path,

scope, audience)

● Concurrency analysis

Time-of-check-time-of-use

on scope permission.

Path traversal attack on

scope path (../../)

These bugs allow unauthorized access of protected data.

However, they are independent of SciToken’s model correctness.

Our initial approach is to understand specs, code, and manual auditing.

3

Despite that SciToken has manual auditing, quality assurance (QA), and testing, they

remain inadequate in unearthing critical bugs.

of critical bugs uncovered

More

Effort Manual

auditing

Desired solution

augments existing

methods

Quality

Assurance (QA)

Testing

Less

Effort

Open source community reporting (33

non-critical issues in scitoken github)

Formal verification of SciToken implementations is urgently needed.
4

https://github.com/scitokens/scitokens/issues?q=is:issue+is:closed

Overview of Dafny: a verification-ready programming language

● A programming language with built-in
specification constructs

● Supporting formal specification through
○ Preconditions,
○ Postconditions,
○ Loop Invariant
○ Termination specifications

● Formal reasoning through code using
Hoare logic

Hoare, C. A. R. (October 1969). "An axiomatic basis for computer programming". Communications of the ACM. 12 (10): 576–580. doi:10.1145/363235.363259.
5

https://en.wikipedia.org/wiki/Formal_specification
https://en.wikipedia.org/wiki/Preconditions
https://en.wikipedia.org/wiki/Postconditions
https://en.wikipedia.org/wiki/C.A.R._Hoare
https://dl.acm.org/doi/pdf/10.1145/363235.363259
https://en.wikipedia.org/wiki/Communications_of_the_ACM
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145/363235.363259

Putting Dafny in perspective

High - level programming language

Dafny

Intermediate verification language

Boogie

Satisfiability modulo theories (SMT) Solver

Z3

Compiled to

Verified by

https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/
6

https://www.microsoft.com/en-us/research/project/boogie-an-intermediate-verification-language/

Why Dafny for scitokens?

● Static verification of programs at compile time, avoiding data leak and system

compromise at runtime.

● Dafny compiler produces both the proof and cross-platform, verified executable code

○ Dafny code is compiled to .NET Common Intermediate Language (CIL)

○ CIL is translated into six languages including compiled (Java, Go, C++) and

interpreted (Javascript, PHP, Python)

Computer

Assisted

Proof

LLVM/CLI

7

Example: verifying scitokens audience, a critical function, with Dafny.

Scitokens

audience specs

Audience

verification logic

Audience verification

impl (scitokens.py)
Dafny implementation

implement verify

Errors & Counter examples

Compile

Verify

Execute

Truth tableSpecs in natural language Python implementation
8

Example (2): verifying scitokens scope with Dafny.

scitokens.py Validate-scope.dfy (excerpt) 9

Time-of-check-time-of-use

Path traversal attack

Found two bugs

Validate audience

Validate scope

Verified three critical functions

Check scope

SciTokens

Codebase & Specs

Learned formal verification tools

SMT/SAT solvers (z3, dafny)

Hoare logic calculus

Generated correct implementation

in six languages

Compiled (Java, C++, Go)

Interpreted (PHP, Javascript,

Python)

Formal

Verification

Correct-by-construction

program synthesis

Summary & Future Work

Putting human-in-the-loop with formal

verification. 10

