
Capability-Based Authorization and Resource Control
Md Arifuzzaman

arif@nevada.unr.edu
Computer Science & Engineering

University of Nevada, Reno

Introduction
Data transfers in high-performance networks require network and I/O parallelism

to reach high resource utilization, known as concurrency. To optimize performance, data
transfer agents might increase concurrency, which often overwhelms the end systems
and networks. Systems administrators might limit the maximum concurrency value per
user to avoid this. They may also cap bandwidth usage per user to maintain fair
resource sharing among them. Also, users have filesystem read-write restrictions
attached to their profiles. Transfer agents must be aware of these user-specific scopes
to properly transfer data from source to destination. Currently, data transfer applications
use the certificate-based authentication model, which is too permissive and do not
contain well-defined scopes as they can only verify user identities. Which raises
potential security and resource abuse concerns. The Scitokens project tries to address
these concerns by replacing certificates with Json Web Tokens (JWT). In addition to
verifying user identities, JWT can also contain scopes for the users for target audiences,
which can facilitate data transfer operations more securely and conveniently.

Falcon - Online Data Transfer Optimization
Falcon aims to maximize high-speed data transfers performance via online

blackbox optimization. Falcon agents are responsible for transferring data from source
to destination, while the Falcon-server collects metrics from agents and performs online
optimizations. At the beginning, the optimizer begins with random/minimal initial
configurations η, agents report back throughput and packet loss for the respective η in a
predefined interval. Using these observations the optimizer calculates new η and sends
it back to agents. This process is repeated until the transfer is completed.

1

mailto:arif@nevada.unre.edu
https://dl.acm.org/doi/abs/10.1145/3458817.3476208


Combining Scitokens with Falcon
Falcon needs properly defined user scopes to securely transfer data among HPC

sites and Scitokens solves this problem effectively. Scitokens library provides
interoperable and capability-based Json Web Token. In addition to authenticating the
user, the issued tokens can have minimal scopes required to perform the data transfer
tasks, thus preventing bad actors from security pitfalls and resource consumption
malpractices in addition to conveniently providing allowed scopes information to Falcon
agents.

Project Architecture
We envision three different types of entities, a centralized Token server, a

centralized Falcon Server, and many Falcon agents for different HPC institutes. The
centralized token issuance server will issue tokens for specific audiences (data source
and destination). The central Falcon server will be responsible for scheduling transfers.
Users can login into the Falcon server via federated login and create transfer tasks.
Then Falcon server can request tokens from the Token server for the specific user and
audiences, and pass tokens to the target falcon agents. Finally, the Falcon agents
running on each site are responsible for the data transfer between source and

2



destination. They subscribed to their respective message queue channel for new
tokens, verify and parse scopes from it using the Token server public key, and begins
data transfer.

Defining Transfer-Specific Token Scopes
1. Maximum Concurrency:

a. Could be a single value specifying read, write and transfer threads.
i. system-wide: concurrency:/5
ii. user-specific: concurrency:/marifuzzaman/5

b. Or it could be more fine-grained. Separate restrictions for different
types of resources.

i. network-specific: concurrency.connection:/5
ii. I/O-specific: concurrency.read:/5, concurrency.write:/5

2. Maximum Bandwidth:
a. Could be the ratio of total bandwidth such as 30% or 0.3. But fixed

values are preferable. As the total available bandwidth value is
pretty ambiguous, the restriction enforcement for ratio-based limits
might be tricky.

i. bandwidth.bps: 10000000, bandwidth.bps: NA

3. Direct I/O:
a. A boolean flag to indicate if direct I/O is permitted. As direct I/O has

an impact on file caching, systems admins can choose to disable it.
i. For example:

1. falcon.directio:/false,
2. falcon.directio:/marifuzzaman/true

4. Storage Level:
a. Put read permission for the source token

i. read:/source_directory
b. Put write permission for the destination token

i. write:/destination_directory

3



Token Server
1. Maintain a scopes database for participating institutes. Each institute can

provide systems-wide or user-specific scopes.

2. Scopes will have predefined namespaces/formats for convenience and
wider adaptability.

3. If the scopes entry of the user for the target audience does not exist, then
the server will fetch system-wide generic scopes.

4. Issues separate tokens for source and destination
a. Source Token: put source as the audience, fetch and append

source scopes.
b. Destination Token: put destination as the audience, fetch and

append destination scopes.

4



5. Example:
a. Serialized Token (Encryption Algorithm: RS256):

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJ1c2VyIjoiYXJpZiIsI
mVtYWlsIjoiYXJpZkBuZXZhZGEudW5yLmVkdSIsInNjb3BlIjoiY29u
Y3VycmVuY3k6L2FyaWYvMyBid19icHM6L2FyaWYvMTAwMDAw
MDAwMCBkaXJlY3RfaW86L2FyaWYvMCByZWFkOi9kYXRhL2Fy
aWYvIiwiYXVkIjoiZHRuMS5jcy51bnIuZWR1IiwiaXNzIjoiaHR0cHM6
Ly9ocGNuLnVuci5lZHUiLCJleHAiOjE2NDk4OTA1OTksImlhdCI6M
TY0OTg4OTk5OSwibmJmIjoxNjQ5ODg5OTk5LCJqdGkiOiJhOTgw
YjA0OS0yY2M2LTQ3NzQtOTdmMy0xNDY5ZjMxNjc3OTMifQ.KrDk
TmYW0NaBeJtV0JmhkvFjGDU8tp2y_2SlzzxdpiQTBZ1gNPGVQV
NWTAZww46SO2kptz1v2bQ0Y6uYmg8fs5kZsDZj1Wn83gKvGPoN
EezkhAd73bDhQsCkrVtTLr1TPB08LGf4v7nbsJ19tXKgxuxM-TndrT
sfCg3Hxtlx0M3Mr9-13Pw7zoDcro8cD145eOH1ebrNKhPG_094gm
Rfr6cEhdK9NcOinvTFps13nJLjZsy1bBMPORw94eZ1gr1CvaQLdB
vWTDjYuO42zG5MLufXZihK3T0eQ1vFfFkylJHyOzwb9ycJKSKgdZ
NAa3LlxCPH5M2eTTAk5n6kmhHlcA

b. Deserialized Token:

{
"user": "arif",
"email": "arif@nevada.unr.edu",
"scope": "concurrency:/arif/3 bw_bps:/arif/1000000000

direct_io:/arif/0 read:/data/arif/",
"aud": "dtn1.cs.unr.edu",
"iss": "https://hpcn.unr.edu",
"exp": 1649890599,
"iat": 1649889999,
"nbf": 1649889999,
"jti": "a980b049-2cc6-4774-97f3-1469f3167793"

}

5



Falcon Server
1. Users will log in to the Falcon server via federated login.

2. The User can create transfer tasks by providing source and destination
sites and their respective file directives.

3. Falcon-server provides user identity and the transfer source and
destination hosts to the Scitoken server.

4. Falcon servers get two tokens from the token server respective to the
source and destination hosts. Token has clearly defined scopes for
respective source and destination.

5. Finally, the Server publishes tokens to the respective agents'
communication channels via a message queue.

6



Falcon Agent
1. Each HPC site will have a falcon agent for performing the tasks of

verifying tokens, parsing scopes, sending, and receiving files.

2. Agents will maintain communication with the Falcon server via predefined
communication channels. (Implemented via Redis-stream)

3. Agents subscribed to their channel to receive new tokens. Then it verifies
its authenticity via the issuer public key. Then parse claims/scopes from
the token.

4. Then agents proceed to transfer data by maintaining the limit of the scope.

Conclusion
Capability-based JWT provided by the Scitokens library simplifies authorization and provides
mechanisms for efficient resource control. Properly defined scopes make sure no specific user
overuse the system, consequently, Falcon agents can fairly allocate resources among all users.
Additionally, predefined rules for setting scope values make the token interoperable among
many sites. Finally, in future studies, we aim to integrate additional scopes into the token to
automate as many aspects of resource control as possible.

7


