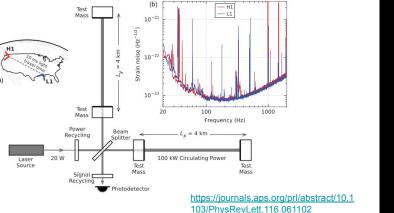


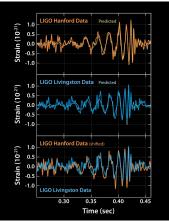
SciTokens in LIGO

James Alexander Clark (LIGO lab / Caltech) & Ron Tapia (PSU ICDS / IGC)

WoTBAn&Az 2021: Oct 18, 2021

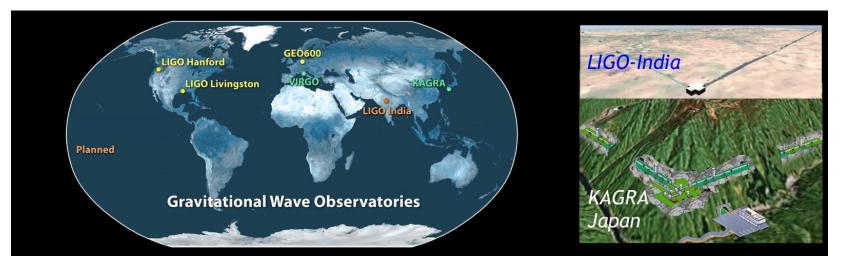
Gravitational Waves




- Perturbations of the space-time metric produced by rapid changes in shape and orientation of massive objects.
- Gravitational waves carry information from the coherent, relativistic motion of large masses

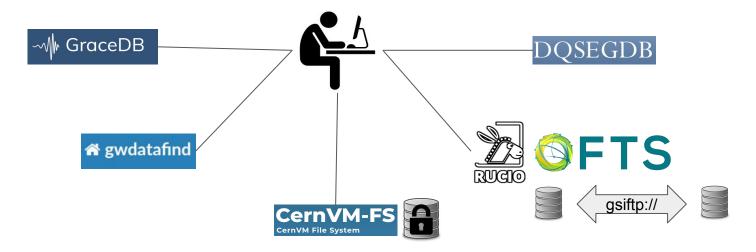
LIGO

Artist's impression of gravitational waves from two orbiting black holes. [Image: T. Carnahan (NASA GSFC)]



- Passage induces stretching / squeezing tidal strain, h ~ Delta L / L
- A "strong" gravitational wave: displacements (Delta L) on the order of 10⁻¹⁸ meters
- Detection: multiple large laser interferometric detectors & digital signal processing

LIGO Livingston (LA)


GEO600 (Germany)

LIGO Computing & An/Az

• LIGO operates & uses a variety of mission critical services with specific auth. requirements

Currently use X.509 for authentication:

- LIGO & Virgo users receive a short-lived proxy certificate from CILogon via CLI tool ligo-proxy-init
- Services use proxy certs generated from robot certificates

Services using X509

• CVMFS:

- LIGO hosts embargoed instrument data in CVMFS for distributed HTC (e.g. OSG) workflows; embargo is currently enforced via X509 credentials, with proxy certs passed along with HTCondor jobs
- GWDataFind:
 - instrument data-discovery utility; users to query for the location of files containing gravitational-wave detector data for consumption by data analysis pipelines.
- DQSegDB:
 - data quality segment database service & client package used to store, access instrument status metadata
- GraceDB:
 - Gravitational-Wave Candidate Event Database, provides a centralized location for aggregating and retrieving information about candidate gravitational-wave events
- Rucio / FTS:
 - Bulk archival data management and replication; operator authentication currently through SSH & transfers between GridFTP end points authenticated with delegated X509 proxy

X.509 for Authentication

- X.509 certificates for authentication
- Authorization via group membership (LDAP)
- Possession of cert implies identity
- Each service responsible for authorization configuration
- Possessor of certificate is entitled to *all* capabilities granted to identity
- Services using X.509: XRootD, CVMFS, DQSegDB, GWDataFind, GraceDB, GridFTP

Some statistics from the last 15 days:

- Unique robot entity that have invoked x509 credentials —> 35.
- Average number of times a robot x509 credentials called daily --> 54
- Unique people who have have invoked x509 credentials —> 333.
- Average number of times a personal x509 credentials are called daily —> 230

SciTokens Motivation

- OSG plans to retire Grid Community Toolkit (Jan 2022)
 - Implications for CVMFS, GSI OpenSSH, Grid FTP
- Improved security:
 - Capabilities based authorization vs identity based authorization
- LIGO observing run O4 early start date: June 2022

SciToken Goals

- Replace X.509 certificates with SciTokens
 - Retire ligo-proxy-init
- Replace grid-mapfile authorization with capabilities-based authorization
 - Grid map files are used by sites to associate X.509 distinguished names with a local users
- Migrate to federated identity
 - Remove reliance on LIGO.ORG kerberos
 - Kerberos supported but not required

SciTokens Use Cases

- HTCondor Jobs
 - Access data: XRootD, CVMFS, StashCache
 - Access GraceDB
- CLI Tools on cluster submit nodes
 - DCC, GraceDB, DQSegDB, GWDataFind
- Robots:
 - Cron jobs accessing DQSegDB
 - CI jobs (GitLab)
- The researcher's laptop
 - Only 64-bit Linux *must* be supported
 - Other operating systems are supported as best-effort

The LIGO SciTokens Team

- System administrators and programmers
- Mostly, not IAM people
- Mostly IAM adjacent
- Mostly concerned with running services that require authn/authz

Consult Experts

- Jim Basney (NCSA) and the SciTokens/SciAuth projects
 - <u>https://scitokens.org/</u>
 - https://sciauth.org/
- Dave Dykstra (FermiLab) help with HashiCorp Vault/CILogon
- Brian Bockelman (Morgridge Institute for Research) XRootD
- Bi-weekly working meetings
- OSG Slack

HTCondor Local Issuer

- SciTokens generated by HTCondor credmon
- iss in the token set to https://scitokens.org/ligo
- Static website based on https://github.com/scitokens/ligo
- Private key configured into HTCondor
- Public keys manually added to https://scitokens.org/ligo/oauth2/certs
- OSG XRootD configured to trust <u>https://scitokens.org/ligo</u>
- OSG XRootD configured to map scopes to file system paths

Local Issuer Lessons

- **Issuer** is an overloaded term
 - The value of iss in the SciToken payload (serves public key)
 - The generator of SciTokens (uses private key to sign token)
- Easy Condor-only solution
- Not easily adaptable to non-HTCondor use cases

Vault + CILogon

- SciTokens served by HashICorp Vault server
 - vault.ligo.org
 - CLI client: htgettokens
- Vault configured to use CILogon:
 - cilogon:/client_id/caltech/ligo/test
 - cilogin:/client_id/caltech/ligo/prod
- iss in SciToken set to: <u>https://cilogon.org/ligo</u>
- JWKS discovery: <u>https://cilogon.org/ligo/.well-known/openid-configuration</u>
- JWKS (certs): <u>https://cilogon.org/oauth2/certs</u>
- XRootD configured to trust <u>https://cilogon.org/ligo</u>

Vault + CILogon Features

- htgettoken paper by Dave Dykstra
 - <u>https://github.com/fermitools/htgettoken/files/6063416/CHEP21_Paper_Htgettoken.pdf</u>
- HTCondor integration
- Kerberos support & convenient CLI \rightarrow easy integration & adoption with existing workflows
- Support for long-lived processes/robots
 - Method 1: User stores refresh token in a vault path accessible by a Kerberos credential
 - Method 2: Vault admin gives user an indefinitely renewable vault token
- Supports *researcher laptop* use case
- Direct line & support from developers :)

HTCondor with Vault

- Using Vault as the OAuth client in HTCondor Admin Manual
- Install condor-credmon-vault from the HTCondor yum repository
- Vault config based on: <u>https://github.com/fermitools/htvault-config</u>
- Tokens fetched using <u>https://github.com/fermitools/htgettoken</u>
- htgettoken is available in OSG 3.5 yum repository

Current vault deployment:

- vault.ligo.org: single VM (2 CPUs, 2G RAM, 20G HDD), hosted by LIGO lab @ CIT
- Expect to exploit native HA support for production, machine specs TBD

Current State

- Development/testing server vault.ligo.org
- Researcher Laptop use case supported for CVMFS (note: Kagra)
- HTCondor use case supported for CVMFS
- Robot use case supported
- OIDC workflow an alternative to kerberos
- Path forward for other services that use X.509

Next steps

- Finalize namespaces:
 - Requires coordination
 - CILogon configuration
 - LDAP/Grouper groups
 - Service configuration/behavior
 - Audience values
 - Scope values

Outstanding Issues

- Can use SciToken to access XRootD metadata, but not data.
 - This is a known issue and being worked on
- Tracing/auditing

LIGO

- \circ $\,$ Services need to be able to associate access via a token with a responsible party
- Identity is encoded in the sub claim.
- Use LIGO username as sub claim albert.einstein
- Honor system to not use sub for authorization
- GDPR implications for VIRGO users?

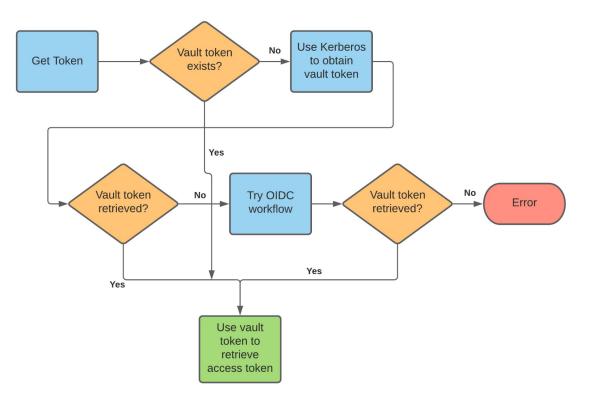
Timeline for a rolling transition (i.e., X.509 \rightarrow mix of X.509 & scitokens \rightarrow scitokens):

- ~End of 2021 / start of 2022: Production-level Vault service and CILogon configuration, integration/support for authenticated LIGO data in CVMFS
- ~June 2022: Transition all services by start of next observing run (O4)

Acknowledgements

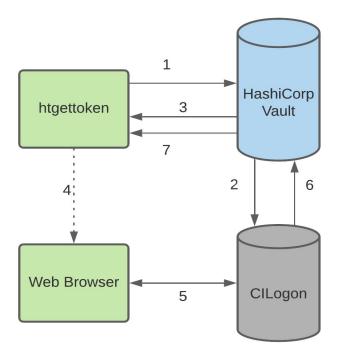
- This work was supported by NSF Grants PHY-1764464, PHY-1700765 and PHY-2110594
- This material is based upon work supported by OAC-1738962

extra


HashiCorp Vault

- Secure path-secret storage
- Secrets can be dynamic
- Supports authentication plugins (vault-plugin-auth-jwt)
- Supports secret backend plugins (vault-plugin-secrets-oauthapp)
- Supports kerberos authentication

htgettoken Flowchart



OIDC Workflow

LSC

- 1. htgettoken contacts vault server.
- 2. Vault contacts CILogon to start transaction.
- 3. Vault responds with a URL and then htgettoken asks the user to use a browser to complete the workflow.
- 4. The user uses a browser to complete the workflow.
- 5. The user is redirected to a CILogon URL, where the user selects an identity provider and authenticates.
- 6. After successful authentication, CILogon contacts vault and sends vault refresh and access tokens.
- 7. Vault responds to htgettoken with a success or failure message. Upon success it sends a vault token and an access token.

OIDC Workflow Video

Permission denied at 1:08. Use gear to set quality to 1080p.