
Tapis Tokens

Joe Stubbs (jstubbs@tacc.utexas.edu)

Sean Cleveland (seanbc@hawaii.edu)

Richard Cardone (rcardone@tacc.utexas.edu)

2021 NSF Cybersecurity Summit

Token-Based Authentication and Authorization Workshop

October 18, 2021

mailto:jstubbs@tacc.utexas.edu
mailto:seanbc@hawaii.edu
mailto:rcardone@tacc.utexas.edu
https://www.trustedci.org/2021-cybersecurity-summit

Tapis Tokens

● Background & Use Cases
● Components of Tapis Security Architecture
● Challenges using Token in Tapis

2

Background & Use Cases

● Tapis Project
● Tapis Services
● Data Management and Code Execution
● Use Cases:

○ Service to Service Requests
○ Cross Site Service Requests

3

Tapis Project
● 5 year, NSF funded computing framework supporting multi-site computational

research

● Used to manage data and execute code on HPC, HTC and cloud systems

(>51K researcher accounts, 23 tenants & 15 gateways 2020-2021)

● Agentless, SSH-based communication with storage/compute systems

● Implemented as microservices with REST interfaces

● Users obtain a token by authenticating to Tapis using OAuth2

○ Subsequent APIs calls are authenticated using the token

4

https://tapis-project.org

Streaming Data, Events and Functions
● Functions (Actors)
● *Notifications
● Streams

MetaData Management
● Meta
● PgREST

Tapis Services

5

Tenancy, Authentication and Security
● Tenants
● Sites
● Tokens
● Authenticator
● Security Kernel
● *Postits

Data Management and Code Executions
● Systems
● Files
● Apps
● Jobs

https://tapis-project.github.io/live-docs

/systems /files /apps /jobs

6

● Register storage and compute systems
● Ingest, move and transform data files

and folders
● Register application containers on large

systems
● Launch jobs to invoke applications &

Capture metadata about the workflow
HPC Cloud

HTC

Data Management and Code Execution APIs

Use Case: Service to Service Requests

7

Security
Kernel

Files
API

Jobs
API

(1)

(2)
(3)

Tapis services must make
authenticated requests to
other services on behalf
of the users.

Systems
API(4)

User Submits A Job
- Job will move input

files to compute
system

2) Check user permissions

3) Schedule Data Transfer

4) Retrieve Storage System Definition

Use Case: Cross-Site Service Requests

8

Security
Kernel

Files
API

Jobs
API

University of Hawaii

(1)

(2) (3)

Tapis services must make authenticated
requests to other services,
including requests to services running at
different institutions (“sites”).

 University of Texas

Systems
API

Security
Kernel(4) (5)

PrimarySite

User Submits A Job
- Job will move input

files to compute
system

Components of Tapis Security Architecture

9

● Tenancy

● Multi-Site Support

● Security Microservices

○ Security Kernel (SK)

○ Tokens

○ Authenticators

● Tapis JWT

Tenancy in Tapis

● Tenants are logically isolated views of the platform

○ Partition groups of users and their resources

● Every tenant is “owned” by a site

● A site can have 1 or more tenants

● The Tenants service provides a registry of all tenants and sites

● A single Tenants instance runs only at the primary site

● Every tenant has its own JWT signing key pair

○ Tenant public keys accessible via Tenants API w/o authentication

10

Multi-Site Support
Hub and Spoke Communication Model

● Associate sites don’t make requests to each other
● Local Control of Identity and Access Management

○ Can use own LDAP or user stores
○ Can use the default authenticator or own

● Local Control of Secrets
○ All secrets and keys stored at local site

● Local Control of Deployed Services
○ Improve data locality
○ Accommodate large databases
○ Extend Tapis by adding/integrating custom services

Requests to services not running at an associate site route to the primary site

Site

Site

Site

Site

11

Primary

UH Associate Site Example

12

Authenticators

● Implement user “login” function by interacting with Identity Provider (IDP)

○ IDPs are typically external to Tapis, such as an institution’s LDAP server

● Each tenant can have its own Authenticator and IDP

● Authenticators interact with Tokens to acquire JWTs for users

○ Authenticator calls IDP to validate user credentials

○ Authenticator calls Tokens to create a new Tapis JWT for user

13

Tapis Tokens Service

● Tokens creates and signs JWTs
○ Uses tenant-specific signing keys

● Loads signing keys from SK at startup
○ Only Tokens service can access keys

● Authenticators validate user credentials
○ Request user JWTs from Tokens

● Services authenticate with a service password
○ Passwords injected into services at startup
○ Tokens calls SK to validate password
○ Tokens creates refreshable service JWTs

14

Tapis Security Kernel

● Security Kernel (SK) - Manages secrets and authorization data

○ Hashicorp Vault for secrets management

○ Apache Shiro based roles and permissions

● Every site runs a Security Kernel

● Only local services can access local SK

● Maintains the public/private key pairs used for signing and verifying tokens

○ Only the keys for tenants owned by that site

● Every site runs its own Authenticator(s), Tokens and SK services

○ Services at a site only interact with their local Tokens and SK

15

Tapis JWT Creation Flows

 Authenticator

Tokens

16

 SK

 Services

User credentials

Token request

Role check

JWTJWT Service password

Password check

JWT

The Tapis JWT

● Specified on API calls in the X-Tapis-Token header
● Contains standard (iss, exp, sub) and custom Tapis claims

“sub”: standard subject in <username>@<tenant> format
“tapis/token_type”: access | refresh
“tapis/account_type”: service | user
“tapis/site_id”: originator’s site
“tapis/target_site_id”: site where JWT is valid
“tapis/tenant_id”: tenant_id of the subject of the JWT
“tapis/username”: username of the subject of the JWT
“tapis/delegation”: true | false
"tapis/delegation_sub": the authorized delegator who created JWT (<username>@<tenant>)

17

Challenges Using Tokens in Tapis

● On-Behalf-Of (OBO) data transmission

● Sending Service-to-service requests (routing, JWT selection)

● Receiving Service Requests (validation)

● Cross-Site resource access

● Dynamic authentication

18

On Behalf Of (OBO) Request Data

19

Context: When a service makes a request to another service, it uses its own service JWT to authenticate.
Challenge: Preserve the identity of the original (user) requester in the service HTTPS request.
Solution: Use specific headers, X-Tapis-Tenant and X-Tapis-User, to transmit the original requester’s identity.

Files Systems

Security Kernel
bob@tacc

jwt-bob
jwt-files
obo=bob
obo=tacc

jwt-files
obo=bob
obo=tacc

jwt-systems
obo=bob
obo=tacc

ssh-bob

Sending Service-to-Service Requests - Example Case

20

bob@uh

jwt-bob

Files

University of Hawai’i

Systems

s-jwt-uh
s-jwt-tacc

f-jwt-taccf-jwt-uh
f-jwt-tacc

TACC (primary site)

uh | pubkey-uh | [Apps, Files]
tacc | pubkey-tacc | [Files, Systems,
...]

Sites & Tenants
unauthen-
ticated

unauthenticated

ssh-bob

Services cache
Tenant and Site
information

Sending Service-to-Service Requests (Full Algorithm)

1. Determine the site for the request:
a. If target service == Tenants -> primary site; If target service == SK, Tokens -> local site.
b. Determine the tenant of the request: this is the tenant in which the objects of the request (the

system(s), app(s), job(s), …) belong.
c. Determine the site owning the tenant. Each tenant is owned by exactly one site, and this site is

available from the Tenants API.
d. Two case:

i. If the service being requested is listed as a service run by the site, this is the site.
ii. Otherwise, the site is the primary site.

2. Send a service JWT with target_site_id claim equal to the site computed in 1.
3. Determine the base URL for the request

a. If 1ci), use the tenant’s base URL.
b. If 1cii), use the base URL for the tenant at the primary site.

21

Receiving Service Requests (Validation) - Example Case

22

Files

University of Hawai’i

Systems

site_id =
tacc

f-jwt-taccf-jwt-uh
f-jwt-tacc

TACC (primary site)

uh | [Files, Jobs, Meta]
tacc | [Apps, Files, …, Systems]

Sites

unauthenticated

Services cache
Tenant and Site
information

“sub”: files@uh-admin
“tapis/site_id”: uh
“tapis/target_site_id”: tacc
“tapis/tenant_id”: uh-main.

Receiving Service Requests (Validation, Full Algorithm)

When a service receives a service request, it performs the following validation

Service Token Validation:

1. Decode the JWT, ignoring the signature, to get all claims.
2. IF tapis/target_site_id ≠ service_config.site_id THEN REJECT
3. Additional checks that this service should be fulfilling this request:

a. IF service == Tenants then OK IF service_config. running_at_primary_site
b. ELIF service IN [Tokens, SK] then OK IF request.tenant_id.owning_site == service_config.site_id
c. ELIF request.tenant_id <=primary_site then OK IF service_config.running_at_primary_site
d. ELSE (request.tenant_id.site_id == AssociateSite) then OK IF either:

i. service_config.site_id == AssociateSite AND service IN AssociateSite.services OR
ii. service_config.running_at_primary_site AND service NOT IN AssociateSite.services

4. # Validate signature using public key associated with tenant...
5. # Check authorizations with the SK at the site…

a. No authz in the JWT (different from scitokens)

23

Cross-site Resource Utilization (Future Work)

Goal: Within a single tenant, access systems at both the primary and associate
site without sharing secrets beyond the site where system is physically located.

Today:

A. Exclusively use systems at their site (for example, as an associate site)

OR

B. Use systems at TACC and local institution but must share secrets and SSH
access with TACC (as a tenant within the TACC site)

24

Cross-site Resource Utilization (Future Work)

Challenges:
1. Restricted SSH access, including MFA policies, at the local institution.
2. Multiple identities at different institutions

Approaches:
1. System access routed to Tapis agents running at the target site
2. Authorization and secrets data available at the target site

a. Authorization data mirrored from owning site
b. Secrets data stored exclusively at target site

3. Identity Mapping and Reconciliation
a. InCommon

4. Globus Auth and File Transfers

25

Dynamic Authentication

Goal: Allow SSH access to systems without manual key distribution

Today:

A. Assign user credentials to each system that a user will access

B. Users share a service account (discouraged)

26

Dynamic Authentication

Challenges: Extending trust relationships to include dynamically generated credentials

● Allow SSH access using credentials created on the fly by trusted components

Approaches:

A. Use Vault CA to create short-lived certificates upon request from Tapis
a. Systems have to trust Vault CA and Tapis authentication/authorization

B. Use SciTokens to create short-lived tokens
a. Systems have to trust SciToken issuer and its authentication/authorization
b. Requires a SciToken PAM module

27

Thank You

28

https://tapis-project.org

Funding

•The Tapis Framework: NSF Office of Advanced CyberInfrastructure #1931439 and #1931575

Contact Us:

 Joe Stubbs (jstubbs@tacc.utexas.edu)

 Sean Cleveland (seanbc@hawaii.edu)

 Richard Cardone (rcardone@tacc.utexas.edu)

https://tapis-project.org
mailto:jstubbs@tacc.utexas.edu
mailto:seanbc@hawaii.edu
mailto:rcardone@tacc.utexas.edu

Backup Slides

29

Cross-site Resource Utilization (Future Work)
Within a single tenant, access systems at both the primary and associate site without sharing secrets beyond the
site where system is physically located.

Challenges:

● We must honor local security requirements, including MFA requirements, when accessing the physical
system.

● The API identity may be different from the identity used to access the physical system.
○ For example, a University of Hawaii tenant user authenticates to Tapis as its UH identity but wants to access a TACC system using

its TACC identity.
● Tapis must be able to route requests to the site where a system physically resides (not based on the site

owning the tenant in which the system is defined).

Solution ingredients:

● Dynamic authentication based on pre-established trust relationship between Tapis and physical systems.
○ OAuthSSH + SciTokens

● MFA integrated into the access token and/or SciToken.
● Identity mapping across identity providers.
● More sophistication in the Tapis API Router.

30

Using JWTs for Cross-site Resource Utilization (previous)

Future Work

● Within a single tenant, access systems at both the primary and associate site
without sharing secrets beyond the site where system is physically located.

a. MFA exemption is restricted to SSH sessions within the network.
b. Programmatic MFA

● Dynamic authentication based on pre-established trust relationship between Tapis
and systems.

a. Implement using SciTokens?
● Today, associates site can either:

a. Exclusively use systems at their site
b. Use systems at TACC and their site but they have to share secrets and SSH access with TACC

●
● Using JWTs to access resources (systems) across different associate sites.

a. For example, enable a UH tenant to run jobs on both UH and TACC systems.

31

Tapis JWTs for Cross-site Service Requests: Challenge

When service A makes a request to service B, it includes its service token in a header in the
request.
● This means that service B obtains a token representing service A as part of processing

the request. (Service A’s token “leaks” to service B).
● In theory, service B could use the token to impersonate service A.
● When the two services are at different sites, this seems especially troublesome.

Our solution: Use a special claim in the JWT, tapis/target_site_id, to specify a site
where a service JWT is valid.
● Requires services to maintain a JWT for each site they plan to communicate with.
● Requires services to be able to “compute” which site will receive their request.
● Impersonation within a site is still possible.

32

Tapis JWTs for Cross-site Service Requests: Use Cases

Cross-site service requests are needed to support use cases where sites only run a subset of Tapis
services.

Use Case 1 (“Performance Site”). The site runs the Files service but not the Jobs or Systems services.
● This use case support running a minimum number of services while still providing good

performance when transferring data to and from storage and execution system within the site.
● The Jobs API running at TACC calls the Files API running at the site.
● The Files API running at the site calls the Systems API running at TACC.

Use Case 2 (“Local Security Site”). The site runs the Systems, Files and Jobs services.
● This use case supports keeping all secrets within the site.
● In this case, cross-site requests can still arise from other services (Actors, Apps, Meta, Streams,

etc.)

33

